Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(2): 025102, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701332

RESUMO

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4. Based on our measurements, we demonstrate that either a significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic Alfvén waves.

2.
Science ; 318(5856): 1585-8, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18063788

RESUMO

The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...